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Abstract. We study the fluctuation-induced magnetotransport of a two-dimensional superconductor in the
quasiballistic regime, where ξGL(T ) � � (� is the electron mean free path and ξGL(T ) is the Ginzburg-
Landau coherence length). The magnetoconductivity is evaluated in the nonlocal fluctuation regime thereby
extending the existing theory valid in the local limit. We show that the Maki-Thompson (MT) and density-
of-states (DOS) contributions strongly compensate each other and their sum is negligible in comparison
with the Aslamazov-Larkin (AL) term. The hierarchy of the fluctuation contributions to the magnetocon-
ductivity in the high-field limit is also qualitatively discussed.

PACS. 72.10.-d Theory of electronic transport; scattering mechanisms – 71.30.+h Metal-insulator
transitions and other electronic transitions – 71.10.Ay Fermi-liquid theory and other phenomenological
models

1 Introduction

Recently it has been demonstrated [1,2] that the quasi-
ballistic character of the electron motion in a clean su-
perconductor can significantly change the traditional pic-
ture of the fluctuation phenomena manifestation above the
critical temperature. In particular, in the regime where the
electron mean free path � considerably exceeds the effec-
tive size of the fluctuating Cooper pair ξGL(T ) = ξ0/

√
ε

(ε = (T − Tc)/Tc, ξ20 = 7ζ (3) v2
F /32 (πT )2, ζ (3) ≈ 1.21

is the Riemann’s ζ− function [3]), a strong compensation
between the Maki-Thompson (MT) and density-of-states
(DOS) contributions to the conductivity occurs [2], while
the Aslamazov-Larkin (AL) paraconductivity survives un-
changed [4].

In a normal metal the transition from the diffusive
to the quasi-ballistic regime is controlled by the relation
between the electron elastic mean free path � and the dif-
fusive length lT =

√
D/T (D = v2

F τ/2 is the diffusion
coefficient) or, in other words, by the ratio of the tem-
perature T and the elastic scattering rate. This ratio is
given by the value of Tτ , where τ is the elastic scattering
time. In a superconductor, due to the presence of the addi-
tional length scale ξ0, the range of impurity concentrations
of a clean metal (ξ0 � � ⇔ Tτ � 1) close to the su-
perconducting transition temperature can be divided into
clean (ξ0 � � � ξGL(T )) and ultra-clean (ξGL(T ) � �)

regimes. In terms of the reduced temperature scale, the
narrow range ε � 1/(Tτ)2 (which includes both the dif-
fusive and clean regimes) can still be described by the
local fluctuation theory, while the study of the fluctuation-
dominated transport in the most interesting temperature
interval 1/(Tτ)2 � ε � 1 (ultra-clean regime) requires
a nonlocal treatment. This may be particularly relevant
in the case of the high-temperature cuprates, where Tτ
for the high-quality samples is estimated to reach 5–10,
and almost all the range of the experimentally accessible
reduced temperature ε belongs to the ultra-clean limit.

Indeed in a sufficiently clean superconductor (Tτ �
1), the locality condition ε � 1/(Tτ)2 almost contra-
dicts to the 2D thermodynamical Ginzburg-Levanyuk cri-
terion of the mean-field approximation applicability (Gi ∼
Tc

EF
� ε). Moreover, as it is known, the high order cor-

rections for the transport coefficients become comparable
with the mean-field results much before than those for the
thermodynamical ones, namely at [5] ε ∼ √

Gi. Hence,
being interested in the study of the fluctuations in clean
superconductors, de facto, one can speak only about their
nonlocal behavior.

Electrical transport is affected by the presence of a
perpendicular magnetic field. In particular, the fluctua-
tion magnetoconductivity of a superconductor close to
the transition temperature has been widely studied in the
literature within the approximation of the local theory
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(see for example [6–8]). In this paper, we extend the cal-
culation to the ultra-clean limit where the nonlocal fluc-
tuation theory is required.

As it is well known, the relation between the value of
the electron mean free path and the Larmour radius RL

is crucial for the study of the one-electron magneto-
transport characteristics of a metal. For weak magnetic
fields, (� � RL = vF /ΩL, where ΩL is the Larmour fre-
quency) the dominant effect consists simply in the bending
of the quasi-classical trajectories, while for strong fields
(RL � �), the electron motion becomes considerably lo-
calized and the quasi-classical picture is no longer valid.
The condition ΩLτ ∼ 1 separates the different regimes in
the magnetoconductivity of a metal in the presence of im-
purities [9]. This condition can be also rewritten in terms
of the reduced magnetic field h = H/Hc2

ΩLτ = DeHτ =
v2

F eτ
2Φ0

4πξ20
h =

8π2

7ζ (3)
(τT )2 h ∼ 1, (1)

where Φ0 = π/e is the magnetic flux and Hc2 = Φ0/2πξ20
is the upper critical field. Then the regions of weak and
strong fields for the one-electron magnetotransport can be
written as h� 1/(Tτ)2 and 1/(Tτ)2 � h.

When considering the effect of the magnetic field on
the fluctuation-Cooper-pair transport, a discussion of the
relevant length scales must include, side by side with RL

and �, the GL coherence length ξGL(T ) as well. As a re-
sult, the weak fields regime, characterized by the ballistic
motion of the Cooper pairs and the quasi-classical motion
of the electrons, (ξGL(T ) � �� RL), can be defined as
h � 1/ (Tτ)2 � ε � 1, whereas, in the regime of strong
fields 1/ (Tτ)2 � min{h, ε} � 1, the one-electron mo-
tion can no longer be described by the bending of the
quasi-classical trajectories only. Below we will present the
results for the electrical conductivity as a function of both
the reduced temperature and magnetic field strength for
arbitrary values of the parameter Tτ .

The layout of the paper is as follows. In the next sec-
tion we derive the general expressions for the fluctuation-
induced electrical conductivity due to the quantum fluc-
tuation processes (DOS and MT) valid for any impurity
concentration. In Section 3 we perform the calculation of
the electrical magnetoconductivity in the nonlocal limit.
Section 4 contains a brief summary and a discussion of the
results.

2 General expression for fluctuation
conductivity

The electrical conductivity is given by the electromagnetic
response kernel [10,11]:

σ = lim
ω→0

QR (ω)
−iω

· (2)

The Feynman diagrams which contribute to QR(ω) in
the first order of perturbation theory in the fluctuations

1

2 3 4 5

6

Fig. 1. Feynman diagrams for the leading-order contributions
to Q(ων).

are shown in Figure 1. Here the wavy lines are the fluc-
tuation propagators, L, the solid lines are the impurity-
averaged normal-state Green’s functions, G, the shaded
semicircles are the vertex corrections arising from the
impurities (cooperons), C, the dashed lines with central
crosses are additional impurity renormalizations. With-
out any approximation regarding the Tτ parameter and
in the absence of magnetic field, G, L and C for a two-
dimensional (2D) superconductor are given by [2]:

G (p, εn) =
1

iε̃n − ξ (p)
(3)

L−1 (q, Ωk) = −N0

{
ln
T

Tc
+

∞∑
n=0

[
1

n+
1
2

− 1√(
n+

1
2

+
Ωk

4πT
+

1
4πTτ

)2

+
v2

F q
2

16π2T 2
− 1

4πTτ

]}

C (q, ε1,ε2) =

1 − Θ (−ε1ε2)
τ
√

(ε̃1 − ε̃2)
2 + v2

F q
2


−1

(4)

where, following the standard notation, ε̃n = εn + signεn

2τ ,
ξ (p) = p2/2m− µ , N0 is the density of states and Θ (x)
is the Heaviside function. The current vertices are

j(p, εn, εn+ν) = ev(p) (5)

where the v(p) is the velocity of quasiparticle. The quasi-
classical Aslamazov-Larkin contribution (diagram 1 of
Fig. 1) to the electrical conductivity of a 2D supercon-
ductor above Tc, was shown to be independent on the im-
purity concentration for all scattering regimes [2,12]. We
restrict our analysis to the vicinity of the critical tempera-
ture, where as it is well known (see, for instance, Ref. [13])
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QDOS+MT(ων) = Qa(ων) + Qb(ων) + Qc(ων) (6)

Qa (ων) =
∑

q

L (q, 0) 2T 2
∑
εn

j2(p, ε2n+ν)C2(q, εn+ν ,−εn+ν)Ia(q, εn, ων) (7)

Qb (ων) =
∑

q

L (q, 0) 2T 2
∑
εn

j2(p, ε2n+ν)C2(q, εn,−εn)Ib(q, εn, ων) (8)

Qc (ων) =
∑

q

L (q, 0) 2T 2
∑
εn

j(p, ε2n+ν)j(q − p, ε2n+ν)C(q, εn+ν ,−εn+ν)C(q, εn,−εn)Ic(q, εn, ων) (9)

Ia (q, εn, ων) =
2πN0

(ε̃n+ν − ε̃n)2

 1√
(2ε̃n+ν)2 + v2q2

− Θ (εnεn+ν)√
(ε̃n+ν + ε̃n)2 + v2q2

+
2ε̃n+νων[

(2ε̃n+ν)2 + v2q2
]3/2

 (10)

Ib (q, εn, ων) =
2πN0

(ε̃n+ν − ε̃n)2

 1√
(2ε̃n)2 + v2q2

− Θ (εnεn+ν)√
(ε̃n+ν + ε̃n)2 + v2q2

− 2ε̃nων[
(2ε̃n)2 + v2q2

]3/2

 (11)

Ic (q, εn, ων) = −2πN0sign (εnεn+ν)

(ε̃n+ν − ε̃n)2

 1√
(2ε̃n+ν)2 + v2q2

+
1√

(2ε̃n)2 + v2q2

− 2Θ (εnεn+ν)√
(ε̃n+ν + ε̃n)2 + v2q2

 (12)

the static approximation for diagrams 2–6 is valid, and
hence the Cooper pair bosonic frequency Ωk can be set to
zero. As a result the contribution of DOS and MT terms
may be written in the form:

see equations (6–9) above

where Qa comes from diagrams 4 and 5; Qb comes from
diagrams 2 and 3 (DOS-type terms); and Qc comes from
diagram 6 (MT-type term). Here

see equations (10–12) above

represent the integral over momentum p. Let us stress
that equations (6–12) describe the quantum fluctuation-
induced electric conductivity in the case of any scattering
regime.

To proceed further and to calculate analytically the
conductivities one has to distinguish the different regimes
of elastic electron scattering. In the diffusive and clean
regimes one can use the local form (obtained by a low-
q expansion) of both the fluctuation propagator and the
cooperon

L (q, 0) = − 1
N0

1
ξ2q2 + ε

; C (q, ε1,ε2) =
|ε̃1 − ε̃2|

Dq2 + |ε1 − ε2| ·

The positive coefficient ξ entering the fluctuation propa-
gator is given by

ξ2 = −v
2
F τ

2

2

[
ψ

(
1
2

+
1

4πτT

)
−ψ

(
1
2

)
− 1

4πτT
ψ

′
(

1
2

)]
, (13)

whereas in the ultra-clean or ballistic regime one has to
use the full non-local form as given in equations (4).

Once we have performed the integration over p, we can
proceed with the summation over the fermionic Matsub-
ara frequency εn and analytical continuation ων → −iω.
For the electrical conductivity this procedure allows one
to reproduce from the general equations (6–12) the lim-
iting local [6] and non-local [2] cases. In the latter case
the strong compensation between DOS and MT diagrams
occurs and the total quantum correction to the conduc-
tivity tends to zero in the limit Tτ → ∞ leaving the AL
paraconductivity as the only effect [2].

The calculation of the fluctuation correction in the bal-
listic regime is not trivial and was first performed for the
case of the electric conductivity in reference [2]. In this
case one has to use the general form of L and C. To eval-
uate the contribution to the magnetoconductivity it is use-
ful first to make an expansion in ων up to the first order
and then to expand each term of the expression in ων in
powers of 1

τ up to the third order. One then verifies that
the zero order in ων vanishes. The resulting series has the
following form

I(q, ων) = ων

∞∑
k=−2

(
1
Tτ

)k
k(q). (14)

One can see that although each diagram contributes to
Ik(q) for k ≥ −2 the sum gives a non vanishing contribu-
tions only for k = 0, 1, 2...

To generalize the result to the important case of a
layered superconductor one has to make the substitution
ln(1/ε) → 2 ln

[
2/

(√
ε+

√
ε+ r

)]
where r is an anisotropy

parameter[6] and to multiply 2D conductivity by 1/pF .
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Fig. 2. The different regimes in fluctuation magnetotransport.
See explanation in the text.

3 Fluctuation magneto conductivity
in perpendicular magnetic field

To discuss the behavior of the transport coefficients in
the presence of a magnetic field, it is convenient to rep-
resent all the different regimes in a ε − h plane as shown
in the phase diagram of Figure 2. The bottom left quad-
rant, characterized by the condition ε, h � 1/(Tτ)2, can
be divided into the domains I (h � ε) and II (h � ε),
corresponding to the weak and strong field limits of the
local fluctuation transport, respectively. The domain III
(ε � 1/(Tτ)2, h � ε ) corresponds to the low field non-
local situation, which was not studied before. It will be
the main subject of the following discussion.

The fluctuation magnetoconductivity of a supercon-
ductor close to the transition temperature has been largely
studied within the approximation of the local theory (see
for example [6–8]). In order to present the complete pic-
ture, the asymptotic expressions for the different fluctua-
tion contributions to the magnetoconductivity∆σ (ε, h) =
σ (ε, h)−σ (ε, 0) of a 2D superconductor in the local regime
(domains I and II) are shown in the Table 1 side by side
with the new results of the present paper valid in the non-
local case (domain III).

Let us compare the values of the different contribu-
tions to the conductivity at the upper limit of validity of
the local fluctuation theory (the line separating the do-
mains I and III). One can easily see that, at ε ∼ (Tτ)−2,
the magnetic field dependent part of the DOS-MT(reg)

contribution becomes of the order of the AL term but is
opposite in sign.

The situation with the MT(an) contribution is com-
plicated by its dependence on the pair-breaking. The
phase-breaking time τφ is determined by the value of
the magnetic field and other inelastic scattering processes
(phonons, paramagnetic impurities, etc.):

1
τφ

= ΩL +
1
τs
,

so that for the phase breaking rate γφ one can write [6]:

γφ =
7ζ(3)

24π2Tτφ

1
Tτ

=
π

2
h+

7ζ(3)
16π2

1
T 2ττs

· (15)

In the weak fields domain I, the first term in (15) is neg-
ligible with respect to ε, whereas the second one defines
γφ0 ∼ (Tτ)−2

τ/τs � (Tτ)−2 (τs � τ). Hence for small
ε the anomalous MT term can be omitted and the fluc-
tuation magnetoconductivity is determined by the most
singular (∝ ε−3) AL contribution only. Vice versa, at the
upper limit of the validity of the local fluctuation theory
(domain I), where ε ∼ (Tτ)−2, one finds that the pair-
breaking is certainly weak (γφ0 � ε). The corresponding
anomalous MT contribution to the magnetoconductivity
is of the same sign as the AL one but exceeds it by a factor
of the order of (τs/τ)

2:

∆σMT(an) ∼ ∆σAL
(τs
τ

)2

· (16)

At the same time we know [14] that in the nonlocal limit
ε � (Tτ)−2 the MT contribution does not depend any-
more on the pair-breaking, so that the extrapolation of
(16) to the regime III has not to be taken too seriously.
Moreover, a strong compensation of the DOS and MT
zero-field contributions has been found for the case of the
non-local fluctuations [2]. This is why below we will revise
the problem of the fluctuation magnetoconductivity of a
2D superconductor in the non-local regime.

The magnetic field is supposed to be oriented per-
pendicular to the superconducting plane. In our calcu-
lation we will follow the common scheme used in the
local case [5]: the effect of a magnetic field on the fluc-
tuation conductivity is formally taken into account by the
quantization of the Cooper pair center-of-mass motion.
This means that instead of the integration over the long
wavelength fluctuation contributions one has to sum the
contributions of different Landau levels which classify the
fluctuation Cooper pairs states in a magnetic field.

In the non-local fluctuation regime, we can still use
the same idea as long as the one-particle motion can be
considered as quasi-classical and the effect of the electron
trajectories bending between successive impurity scatter-
ing events can be neglected in comparison with the Cooper
pairs spectrum quantization. This situation takes place in
the domain III of the phase diagram (Fig. 2).

The peculiarity of the non-local fluctuation dynam-
ics, when the modes with momenta q ≥ �−1 are involved,
requires the dealing with the cooperon and fluctuation
propagator given in the general form of equations (4).
They are valid for any q � pF (one can see that for
vF q � max{T, τ−1} they reduce to the well known local
expressions [5]). The non-local electromagnetic response
functions for DOS and MT diagrams in the absence of
magnetic field were obtained in reference [2], where the
strong cancellation between them occurred. Namely, the
regular part of the MT diagram appearing from summa-
tion in diagram 6 of the Matsubara interval of frequency
n ∈ ]−∞,−ν − 1] and n ∈ [0,∞] exactly compensate the
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Table 1. The fluctuation contributions to the electrical magnetoconductivity for domains I, II and III.

I h � ε II ε � h III h � ε

∆σAL − e2

25

h2

ε3
−σAL(0, ε) +

e2

8

1

h
− e2

25

h2

ε3

∆(σDOS+

σMT(reg))

e2π(Tcτ )
2

3 257ζ(3)

h2

ε2
e22π(Tcτ )

2

7ζ(3)
ln

h

4ε
0.13

e2

Tcτ

h2

ε2

∆σMT(an)

ε � γϕ
− e2

3 × 25

h2

γϕε2
−σMT(0, ε) +

e2

16

1

γϕ
ln

γϕ

8h

∆σMT(an)

γϕ � ε
− e2

3 × 25

h2

εγϕ
2

−σMT(0, ε) +
3π2e2

32s

1

h
−0.002

e2

Tcτ

h2

ε2

result of corresponding summation in the diagrams 2–5
(DOS Type) leaving only:

QDOS(ων) +QMT(reg)(ων) =

25πT

τ2
σD

∫
dq

(2π)2
L(q, 0)T

−1∑
n=−ν

1

[(2εn)2 + (vF q)2]
2 ·

(17)

The resting anomalous MT contribution

QMT(an)(ων) =

− 24πT

τ2
σD

∫
dq

(2π)2
L(q, 0)T

−1∑
n=−ν

(4εn)2 + (vF q)2

[(2εn)2 + (vF q)2]
3 ,

(18)

where σD is the conductivity of a 2D normal metal.
The quantization of the Cooper pair motion in a mag-

netic field for the clean case can be carried out in the same
way as in dirty one. By introducing the gauge invariant
momentum operator q̂ → ∇/i − 2eA, we replace, q2 in
the fluctuation contributions evaluated in the absence of
magnetic field by 2h (n+ 1/2) /ξ20 . As a result one has to
replace summation over Landau levels instead of the mo-
mentum integration:∫

d2q
(2π)2

→ H

Φ0

∑
m

=
h

2πξ20

∑
m

.

In the domain of weak magnetic fields (III) one can carry
out this summation by means of the Euler-Maclaurin’s
transformation

K∑
k=0

f(k) =

∫ K+1/2

−1/2

f(k)dk − 1
24

[
f

′
(K + 1/2)− f

′
(−1/2)

]
. (19)

Being interested in the magnetoconductivity ∆σ (ε, h) =
σ (ε, h)−σ (ε, 0) one can see that the integral, correspond-
ing to the zero field conductivity, is cancelled out and the
problem is reduced to the calculation of the derivatives
of the zero-field expressions (17–18). Taking into account

the fast convergence to zero in εn it is possible to use the
decomposition

−1∑
n=−ν

f(εn) =
∞∑

n=0

(f(εn−ν) − f(εn)) .

In this way we avoid the presence of ων in the sum lim-
its making the corresponding function analytical in this
variable [5]. Then the analytical continuation of (17–18)
becomes trivial: it is sufficient to substitute ων ⇒ −iω → 0
and to expand f(εn − iω) in ω before the summation:

−1∑
n=−ν

f(εn)|ων⇒−iω→0 = −iω
∞∑

n=0

16εn

((2εn)2 + (vF q)2)
3 ·

The quantization of the Cooper pair motion results in:

σDOS(ε, h) + σMT(reg)(ε, h) = − h

23π5N0ξ20

σD

τ2T 3

×
∞∑

n=0

∞∑
k=0

(n+ 1/2)(
(n+ 1/2)2 + 2

7ζ(3)h (2k + 1)
)3

× 1

ε+
∞∑

n=0

(
1

n+1/2 − 1√
(n+ 1

2 )
2
+ 2

7ζ(3) h(2k+1)

) · (20)

The sum over k is performed applying the Euler-
Maclaurin’s transformation (19). Appearing integral de-
termines the fluctuation conductivity in the zero field
and it is canceled out from ∆σ(ε, h). The last summa-
tion in equation (20) can be performed in terms of Euler
ζ-function, what leads to the following expression for the
magnetoconductivity in the region III:

∆σDOS(ε, h) +∆σMT(reg)(ε, h) =
31

21π2

ζ(5)
ζ(3)

e2

Tcτ

h2

ε2

= 0.13
e2

Tcτ

h2

ε2
·

The analogous treatment of the anomalous MT contri-
bution yields the same functional dependence but with a
coefficient two orders of magnitude smaller than the DOS-
MT(reg) one:

∆σMT(an)(ε, h) = −0.002
e2

Tcτ

h2

ε2
·
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Nevertheless, one can see that both these contributions
turn out to be negligible in comparison with the more
singular AL magnetoconductivity

∆σAL(ε, h) ≈ −0.03e2
h2

ε3
·

4 Discussion

The analysis proposed demonstrates that for weak fields
the fluctuation-induced non-local electric magnetoconduc-
tivity is determined by the AL contribution practically
over all the range of the impurity concentrations. The
MT anomalous contribution can be observed just in the
case of a very weak pair-breaking in the local regime and
far enough from the critical temperature while the strong
compensation of the DOS with the MT terms in the non-
local regime makes their contribution negligible.

Let us discuss qualitatively the hierarchy of the dif-
ferent fluctuation contributions in the high field region
when h exceeds 1/ (Tτ)2 (domains IV and V of Fig. 2).
In this range of magnetic fields the quantization of the
quasiparticle motion becomes important and the quasi-
classical approximation for the one-particle Green func-
tion is no longer valid [9]. In the case of weak fields taking
into account the bending of the quasiparticle trajectories
may only yield corrections to the conductivity which are
quadratic in the magnetic field, but not singular in T −Tc.
For this reason they were omitted with respect to the
Cooper pairs contribution. Upon increasing the reduced
magnetic field, h, above 1/ (Tτ)2 (domains IV and V),
the quasiparticles become localized by the magnetic field
as well. The integration over electron momenta produces
additional powers of h in the denominator in direct anal-
ogy with the case of the magnetoconductivity of a normal
metal [9]. The resulting DOS and MT corrections to the
magnetoconductivity will therefore rapidly fall with the
magnetic field as h−α where α ≥ 2. The AL paracon-
ductivity of a clean superconductor in a magnetic field
has been calculated in [12] for an arbitrary ΩLτ. In the
strong-field limit ΩLτ � 1 the AL paraconductivity be-
haves as h−2.

Let us stress the qualitative difference between the
magnetic field dependencies of the fluctuation magneto-
conductivity in the ballistic and diffusive limits: in the
former case the unique AL survived contribution vanishes
for fields larger than Hc2(ε) as the power H2, while in
the latter the remaining DOS contribution is very robust
with respect to magnetic-field effects and decreases log-
arithmically [7] disappearing only at the second critical
field Hc2(0).

In conclusion, we have studied the superconducting
fluctuation contributions to the electric conductivity of a
two-dimensional and layered superconductor in the quasi-
ballistic regime, including the effect of an applied perpen-
dicular magnetic field. We have derived the general ex-
pressions for the quantum corrections to the fluctuation
transport, valid for both local and non-local cases, and

shown their consistency with the previously obtained re-
sults [2,6].

Regarding the fluctuation-induced electrical magneto-
conductivity, we have demonstrated that the non-local
contributions from the MT and DOS processes are negligi-
ble in comparison with the AL term, which is insensitive
to the impurity scattering. The hierarchy of the fluctu-
ation contributions in the high field limit has been also
discussed and demonstrated to be qualitatively different
from the local case.
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